

Manuál k programu ISOVER Fragment[©] Verzia 5.0. – k máj 2024

Program slúži na výpočty základných tepelnotechnických vlastností fragmentov obalového plášťa budov (stena, strop, podlaha...) pri jednorozmernom vedení tepla (bez vplyvu tepelných mostov a väzieb) a to:

- súčiniteľ prechodu tepla U [W/(m².K)]
- tepelný odpor R [m².K/W]
- teplota vnútorného povrchu pri jednorozmernom vedení tepla
- priebeh teploty vo vnútri konštrukcie
- priebeh čiastočného tlaku vodnej pary v konštrukcii
- zistenie kondenzácie vodnej pary vo vnútri konštrukcie
- celková bilancia skondenzovanej a vyparenej vlhkosti vnútri konštrukcie mesačnou metódou aj metódou maximálnych teplôt
- teplotný útlm a fázový posun teplotného kmitu (podľa pôvodnej normy STN 76 0540-07)

Výpočty vychádzajú z normy STN 73 0540 *"Tepelnotechnické vlastnosti stavebných konštrukcií a budov. Tepelná ochrana budov"*, aktualizovanej podľa zmeny Z1 z augusta 2016 a Z2 z roku 2019, noriem STN EN ISO 13788, STN EN ISO 10456 a STN EN ISO 6946. Predpokladom úspešnej práce s programom je znalosť týchto noriem.

Súčasťou programu je aktualizovaná databáza s vlastnosťami materiálov podľa STN 73 0540-3, a množstva ďalších materiálov na základe certifikátov a podkladov od výrobcov tepelnoizolačných a ostatných stavebných materiálov.

Základné charakteristiky:

- Program beží na akomkoľvek zariadení (počítač, tablet, mobilné zariadenia), na ktorom sa dá spustiť moderný internetový prehliadač. Spúšťa sa buď v lokálnom móde (stiahne sa na zariadenie v "zozipovanej" forme, rozbalí a následne kedykoľvek spúšťa v prehliadači aj bez momentálneho spojenia s internetom)) návod na stiahnutie nájdete na konci tohto manuálu v kapitole 10. Vrele odporúčaný a najdôkladnejšie otestovaný je prehliadač Google Chrome, akceptovateľný je aj Mozilla Firefox.
- alebo vo vzdialenom móde prostredníctvom internetu online s možnosťou aktualizácie a zároveň je umožnený prístup ku centrálnym knižniciam vzorových konštrukcií. Túto možnosť Vám ODPORÚČAME vzhľadom na pravidelné aktualizácie. Používanie aplikácie je BEZPLATNÉ.
- program umožňuje ukladanie projektov v dátovom súbore na lokálnom počítači (je užitočné vytvoriť si na ňom príslušné zložky) a otváranie projektov z lokálnej zložky alebo z centrálnej knižnice, resp. využiť CLOUD-ové úložisko.

Upozornenie: dátové súbory novej verzie Fragmentu 5.0 nie sú kompatibilné so staršími verziami ISOVER Fragment 4.0 a nižšie.

Zároveň sa zobrazí užitočný sprievodca – **profesor**. Ak ho ale nebudete potrebovať, kliknite <u>na jeho postavičku</u>.

Som Váš profesor a snažím sa poradiť Vám s riešením problémov pri práci s touto aplikáciou. Som optimista a preto predpokladám, že väčšinou žiadne rady nepotrebujete. Pokiaľ by su Vám zdalo, že niečo v

aplikácii stojí za to, aby som sa pripomínal, napíšte prosím mojim tvorcom. Pokiaľ nechcete, aby som Vás pri práci otravoval,

vypnite ma v SETUP-e. Jednu dobrú radu na úvod si však neodpustím : Skúste niekedy využiť funkcionalitu titulkov - na niektorých prvkoch aplikácie stačí nabehnúť myškou a chvířočku (bez klikania) počkať a môže sa objaviť informačný titulok

(SKÚSTE nájsť titulok na MOJEJ POSTAVIČKE)

1. Prihlásenie užívateľa

Začíname s "Prihlásením užívateľa", ktoré nás presmeruje na prihlasovaciu stránku na CLOUD-e (všetky programy z balíka ISOVER Apps sa teraz spúšťajú cez CLOUD). Ak na CLOUD-e ešte nemáte založené svoje konto, treba sa zaregistrovať (samozrejme, tiež bezplatne). Na prihlásenie a prácu s CLOUD-om je k dispozícii manuál v kapitole 9.

	ISOVER APPS	ISOVER tepelné výpo	čty CLOUD-ové úlo	ožisko projektov	v (Neprihlásený	užívateľ)	OX
		Načítať projekt	Uložiť projekt	Príspevky	O Cloude	Moje Konto	
Мерц		odhlásený z CLOUD-	-u				_
menu	Prihlásenie užívateľa	Email užívateľa:	priscilaXXXL@	gmail.com	personal	ISOVER team	
EDACMENT		Heslo užívateľa: 🛛	••••••		Požadovaná	specialista študent	
FRAGMENT FRAGMENTS.	0 - vypočty tepelnotechnických parametrov konstrukcie	Meno a priezvisko:	Priscila Vymysl	ena	kategória:	laik	
TEMO TEPELNÉ MO	OSTY - simulácia tepelného posocomo - konštrukciu	Súhlasím s podmien	ikami prijatia do CL	.OUD-u:		Email heslo	
PEHA PROJEKTOVÉ	HODNOTENIE - výpočty potreby tepla na vykurovanie	Odhlásiť sa	Prihlásiť sa) Z	Zmeniť údaje)	Registrovať	Odregistrovat	\overline{O}
PEHAVAR VARIANTY PR	OJEKTOVÝCH HODNOTENÍ - porovnávanie hodnotení						
ECERT ENERGETICK	Ý CERTIFIKÁT - tabuľkové formuláre príloh k certifikátu	Potvrdením súhlasu z Právnymi informáciar	žiadateľ vyjadruje, ž mi a týmito Podmie	že si prečítal In nkami prijatia, a	formácie o CLC a že im rozumie	DUD-e v sekcii O O a súhlasí s nimi. R	Cloude spolu s Registrácia je
ISOVER web apps	©ISOVER 2016 - 2021	bezplatná. Zrušenie r	registrácie je kedyk	oľvek možné, p	oričom však dovt	tedy uložené data	projektov a

Po prihlásení na CLOUD-e spustíme program Fragment kliknutím na ikonu/ riadok s nápisom "FRAGMENT".

2. Otvorenie a načítanie fragmentu

Prihlásenie užívateľa už máme zvládnuté a pokračujeme ďalej na "Načítanie fragmentu". Ak zadávate "Nový fragment" po prvý raz, prejdite rovno na zelenú pokračovaciu šípku ("Nový fragment" v tomto prípade neklikajte). Je možné otvoriť fragment aj z uloženého dátového súboru. Kliknutím na "Otvoriť fragment zo súboru" sa otvorí systém zložiek vo vašom zariadení. Taktiež je možné otvoriť súbor zdieľaný v úložisku na CLOUD-e (musíte však byť na CLOUD-e prihlásení) – návod na prihlásenie a uloženie fragmentu je na konci manuálu v kapitole 9. V programe je možné aj načítanie základného dema výpočtu homogénnej obvodovej steny – po kliknutí na "demo Skripta", resp. načítanie základného dema nehomogénnej konštrukcie s rámovou vrstvou – po kliknutí na "demo Vykres".

Ме	nu	
1.	Prihlásenie užívateľa	5. Popis zákazky
2.	Načítanie fragmentu	6. Skladanie fragmentu
3.	Vonkajšie okrajové podmienky	7. Výpočet fragmentu
4.	Vnútorné okrajové podmienky	8. Výsledok fragmentu
ISOVER	Fragment 5.0	©ISOVER 2016-2021
Nad	cítanie fragmentu	< × ×>>>
	Nový fragment	formuláre pripravené pre nové zadávanie
	Otvoriť fragment zo súboru	
	Načítať z CLOUD-u	
den	no Skripta demo Vykres	

Nezabudnite kliknúť na zelenú pokračovaciu šípku

Tip: Od začiatku si vytvorte vo Vašom počítači systém zložiek, do ktorých si budete ukladať zadávacie súbory (napr. podľa názvov fragmentu, akcií, dátumov a pod.), aby ste sa k nim mohli pri budúcich zmenách alebo zadávaní príbuzných skladieb bez problémov vrátiť.

3. Vonkajšie okrajové podmienky

V menu pre nastavenie okrajových podmienok si môžete vyrolovať konkrétnu obec, ku ktorej program automaticky dodá vonkajšiu výpočtovú teplotu a relatívnu vlhkosť vzduchu. Súčasťou je aj pokročilé vyhľadávanie (po kliknutí na lištu s nápisom "Obec (hľadať) stačí zadať prvé písmená vo vyhľadávači obcí).

Vonkajšie o	okrajové p	odmienk	У	< X >	
Kraj:	Banskobystricky	í	~		
Okres:	Zvolen		~		
Obec:	Breziny		~		
▲Obec (hľadať)					
		Brezh			
Brez		Brezany			
		Brezina			
		Breziny			
	lanuálne zad	danie vonkajších o	okrajových podm	ienok	
Výpočtová oblasť:	3: -14.0 C0.3	K Pri	estor vonkajšej t	eploty	
Nadmorská výška [m]:	360	0	vonkajši 🔵 v	nútorný 🕘 zemina	3
Teplota [°C]:	-15				
Vlhkosť [%]:	84,59				
	Prieme	rné mesačné tepi	ty a vlhkosti		
Jan Feb M	lar Apr Maj	Jun Jul A	ug Sep Okt	Nov Dec	
-3 -1 3	9 14	16 18 1	7 13 8	3 -2	
80.67 79.9 7	8.24 75.41 72.72	71.54 70.31 7	0.93 73.28 73	91 78.24 80.29	
	14 11		second Research Research	and Research Research	

Je možné zadať okrajové podmienky aj manuálne kliknutím na príslušný štvorček. Po kliknutí sa uvoľní zadávacie okno pre okrajové podmienky, ktoré je nutné podľa potreby vyplniť.

POZOR! Pri konštrukcii oddeľujúcej vnútorný priestor s inou teplotou (stena s vodorovným tepelným tokom, strop pod alebo nad vykurovaným priestorom, podlaha na teréne a pod.) sa zadáva teplota manuálne – odporúčané hodnoty sú uvedené aj v tabuľke s profesorom. Rozdiel teplôt je už v menu "Skladanie fragmentu" zafixovaný.

Ak napríklad potrebujete zadať konštrukciu vnútornej steny k nevykurovanej garáži, zakliknete v oblasti "Priestor vonkajšej teploty" - "<u>vnútorný</u>", prípadne si môžete zobraziť pomocnú tabuľku s teplotami (pre vykurované, resp. nevykurované priestory).

norská vý ota [ºC]: osť [%]:	orská výška [m]: 360 ta [°C]: -15 sť [%]: 84,59					 vonkajší Ovnútorný zemina teploty nevykurovaných priestorov teploty vykurovaných priestorov 					
Jan	Feb	Mar	Apr	Priemer Mai	né mes	ačné te	loty a	vlhkost	i Okt	Nov	Dec
-3	-1	3	9	14	16	18	17	13	8	3	-2
00.07	79.9	78.24	75.41	72.72	71.54	70.31	70.93	73.28	75.91	78.24	80.29

V časti "Vonkajšie okrajové podmienky" sa zobrazuje aj *tabuľka s priemernými mesačnými hodnotami teploty a relatívnej vlhkosti vzduchu* v závislosti od zvolenej lokality – mesta alebo obce.

4. Vnútorné okrajové podmienky

Teplotu a relatívnu vlhkosť vnútorného vzduchu je možné zadať z menu:

Vnútor	lmienky 🛛 🔀 🔀		
Štandartr Neštanda	né podmienky rtné podmienk	y 🕻	výber z orientačnej tabuľky
Teplota [°C]:	20	Vykurovanir	Neprerušované (+0.2K)
Vlhkosť [%]:	50	Najnižšia trp	olota vnútorného povrchu konštrukcie [ºC]: 12,82

Štandardné podmienky – teplota 20°C a relatívna vlhkosť vzduchu 50% sú normatívne pre obytné miestnosti. Pri neštandardných podmienkach je vo <u>"výbere z orientačnej tabuľky"</u> k dispozícií uložená nápoveda. Ostatné sú v norme STN 73 0540-3 – tab. 1 prílohy B.1.

Pri zadávanú vnútorných okrajových podmienok je možné zvoliť si aj spôsob vykurovania vnútorného priestoru (prerušované, neprerušované: s poklesom teploty od 5 - 15 K) v súvislosti s výpočtom najnižšej povrchovej

teploty na vnútornej strane konštrukcie a hodnotením hygienického kritéria (podľa STN 73 0540-2: časť 5.3.1 – 5.3.4), ktorej hodnota je uvedená nižšie. Výpočtová teplota vnútorného povrchu konštrukcie musí byť bezpečne nad teplotou rosného bodu a vylúčiť riziko vzniku a rastu plesní pri daných okrajových podmienkach.

Upozornenie: pri zmene typu vykurovania napríklad na prerušované s rozdielom teplôt nad 15 K je požiadavka na najnižšiu povrchovú teplotu konštrukcie pri tejto voľbe najprísnejšia spomedzi všetkých možností. Ak počítaný fragment konštrukcie nesplní túto požiadavku, resp. teplota na vnútornom povrchu je nižšia ako minimálna požadovaná hodnota, program v časti "Výsledky výpočtov" upozorní na danú skutočnosť – informáciou o riziku vzniku plesní na vnútornom povrchu konštrukcie.

Cieľom tejto funkcie programu je vyhodnotenie normatívnej požiadavky (podľa STN 73 0540-2) na minimálnu povrchovú teplotu pre vznik a rast plesní – hygienické kritérium. Pri voľbe prerušovaného vykurovania s rôznym rozdielom teplôt (pokles teploty do 5, 10 a nad 15 K) sa táto požiadavka sprísňuje, čo pri prerušovanom vykurovaní – napr. pri vykurovaní objektov nie primárne určených na celoročné bývanie (chaty a pod.), môže predstavovať za určitých podmienok problém a nesplnenie normatívnej požiadavky zabezpečujúcej minimálne hygienické kritérium. Preto je dôležité si túto podmienku overiť výpočtom.

5. Popis zákazky

Môžete, ale nemusíte vyplniť príslušné riadky:

Popis záka	izky 🔣 🔀 🔀
Názov stavby:	Môj dom
Adresa:	Horná Dolná
Investor:	Swen Niederland
Meno projektanta:	Ornelia Muttiová
Firma:	Rýchly Projekt s.r.o.
Názov konštrukcie:	Obvodová stena
Difúzne otvorená skl. Nosná konštrukcia: H Vnútorné opláštenie Fasádna izolácia: ISC	adba obvodovej steny (panelový systém na báze dreva) (VH 60/240 - tepelná izolácia ISOVER UNIROL PLUS rámu: RIGIDUR H DVER CLIMA 034

V sekcií "Popis zákazky" môžete okrem riadkov v hornej časti s jednotlivými popisnými charakteristikami konštrukcie doplniť aj <u>podrobnejší popis fragmentu konštrukcie</u> v príslušnom textovom poli (dolu). Všetky údaje, ktoré boli vyplnené, sa následne zobrazia na začiatku vo výslednom protokole o výpočte. V prípade editácie údajov je potrebné sa vrátiť späť na sekciu "Popis zákazky" a upraviť, resp. doplniť potrebné informácie. Ak údaje v okne "Popis zákazky" zostanú nevyplnené, v protokole o výpočte sa na úvodnej strane zobrazí nevyplnená uvodná hlavička (Názov stavby, Adresa ...) a prázdne textové pole.

Nezabudnite kliknúť na zelenú pokračovaciu šípku.

6. Skladanie fragmentu

Dostali ste sa k samotnému jadru Fragmentu.

Pri zadávaní vlastnej konštrukcie je potrebné vybrať z roletového menu druh konštrukcie,

Sklad	danie fi	ragmer	×××	
Druhy koni Vybraná ko	štrukcie v obr onštrukcia	aze: 🛛 💟	ýber z 3D pohľa	idu) Vzorové konštrukcie
Druh konšt	trukcie:	Vonkajšia	stena a šikma s	strecha nad obytným priestorom so sklonom : 🗸
Rozdiel tep	olôt vnútornéh	io vzduchu v	oddelených prie	estoroch: nad_25K
R _{si}	Rse	U _{r2}	R _{r2}	tabuľky
0.13	0.04	0.22	4.4	odvetraná vzduchová medzera
	A CONTRACTOR			

prípadne zakliknúť prítomnosť <u>odvetranej vzduchovej medzery</u> (ak sa táto v konštrukcií nachádza) a prejsť rovno k zadávaniu prvej vrstvy.

V tabuľke v hornej časti okna "Skladanie fragmentu" sa nachádzajú príslušné hodnoty odporov pri prechode tepla na vnútornom (R_{si}) a vonkajšom (R_{se}) povrchu, ktoré závisia od zvoleného druhu konštrukcie. Rovnako sú v tabuľke zobrazené aj normové požiadavky na maximálne hodnoty súčiniteľa prechodu tepla (U_{r2}) a tepelného odporu (R_{r2}) podľa zvoleného typu konštrukcie.

Upozornenie: použitie, resp. zakliknutie odvetranej vzduchovej medzery sa používa v obalových konštrukciách, ktorých konštrukčná skladba uvažuje s odvetranou vzduchovou medzerou na vonkajšej strane konštrukcie ako sú napr. obvodové steny s odvetranou fasádou alebo strešné konštrukcie. Všimnite si, že po zakliknutí "odvetranej vzduchovej medzery" sa zmení hodnota tepelného odporu pri prestupe tepla na vonkajšom povrchu konštrukcie – R_{se}, ktorá má vplyv na výslednú hodnotu odporu pri prestupe tepla konštrukciou – R_{TOT} a súčiniteľ prechodu tepla konštrukcie – U.

V aktuálnej verzii je možné vybrať rôzne skladby aj z knižnice vzorových konštrukcií: (prejdite na "Výber z 3D pohľadu"):

Sklad	danie fr	agment	tu	< × × >>
Druhy kon Vylsana Ko MC-N-MO	štrukcie v obra onstrukcia C-CS-04-02-0	oze: Výb 0-IN rez:A	er z 3D pohľad	lu Vzorové konštrukcie
Druh konš Rozdiel ter	trukcie: Dôt vnútornéh	Vonkajšia st o vzduchu v od	ena a šikmá sl ddelených prie	recha nad obytným priestorom so sklonom : v storoch: nad_25K
R _{si}	R _{se}	U _{r2}	R _{r2}	tabuľky

Výber z 3D pohľadu

Pri zakliknutí tlačidla "Výber z 3D pohľadu" sa zobrazí schéma budovy, z ktorej vyberiete druh konštrukcie kliknutím na žlté položky 1 (vonkajšia stena...) až 12 (Podlaha vykurovaného priestoru...).

Po chvíli sa zobrazí náhľad knižnice so schémami jednotlivých konštrukcií - vpravo (nasledujúce obrázky).

Rolovanie je možné prostredníctvom pravej posuvnej lišty (viď. obrázok na ďalšej strane). Výber skladby potvrdíte kliknutím na "Skladbu vrstiev" a následne kliknutím na "Vyber". Po kliknutí na tlačidlo "Skladba vrstiev" sa zobrazí výpis danej skladby konštrukcie v prehľadnej tabuľke. Ak je zvolená konštrukcia na zelenom podklade, po zobrazení tabuľky sa táto rovnako zobrazí vysvietená na zeleno spolu so všetkými vrstvami, ktoré sa prenášajú do výpočtu fragmentu – konštrukcie s odvetranou vzduchovou medzerou vo výpočte uvažujú iba vrstvami po odvetranú medzeru.

Knižnica je prepojená na katalóg Multi-komfortných konštrukcií s kompletnými katalógovými listami (obsahujúcimi fyzikálne vlastnosti, certifikát Passiv Haus, 2D teplotné polia) cez odkaz na <u>Multi-komfort</u> <u>www</u>.

skladba	А	5	ISOVER UNIROL PROFI (1)	16	160/966/1111	
(Vyber)	\mathbf{N}	6	Doska OSB	1.5	9/188/333	
	Y	7	ISOVER SUPER-VENT PLUS (1)	12 cm	27/1047/1252	
	ſ	8	Odvetrávaná medzera	3 cm	56/935/1076	
		9	Vonkajší obklad (drevo, superdoska, cementovláknitá doska)	1.5 cm	9/925/1066	

V niektorých konštrukciách je možné stiahnuť si priamo detail v dwg. alebo BIM-súbor.

Po výbere "Skladba vrstiev" sa ukáže náhľad, na ktorom potvrdíte "Vyber". Vzápätí sa vrátite do programu Fragment, v ktorom môžete skladbu editovať, alebo prejsť priamo na výpočet.

Skladba vlastnej konštrukcie

Vrstvy fragmentu sa skladajú smerom od interiéru k exteriéru – v smere tepelného toku. Výber materiálu z databázy začneme rolovaním z "Hlavnej skupiny". V roletovom menu funguje aj vyhľadávanie podľa prvého písmena. Materiál je taktiež možné vyhľadať obdobne ako pri zadávaní obce (kliknutím na lištu s nápisom "Materiál (hľadať)") - vysvetlené nižšie. Pri skupinách s viacerými materiálmi konkrétny prvok vyberieme z podskupiny. Pri niektorých materiáloch program umožňuje špecifikovať aj objemovú hmotnosť, od ktorej závisí tepelná vodivosť. Je možné zadať aj vlastný materiál kliknutím na príslušný box ("Vlastný materiál"). Pritom sa uvoľnia zadávacie okná, ktoré je nutné podľa potreby vyplniť.

Pri niektorých materiáloch sa objaví odkaz na katalógový list (s bližšou charakteristikou a účelom použitia materiálu) a environmentálne vyhlásenie o produkte - EPD materiálu.

١

Nezabudnime zadať "Hrúbku materiálu v mm".

V niektorých prípadoch je však hrúbka materiálu zafixovaná vzhľadom na daný výrobný rozmer.	▼Materiál (hľadať) Hlavná skupina: Podskupina: Objemová hmotnosť:	ISOVER - kontaktné fasády v ISOVER CLIMA 034 v 55 v	
Po zadaní hrúbky príslušnej vrstvy pre vybraný materiál sa v príslušnom okne vľavo zobrazí hodnota tepelného odporu (<i>R</i>) danej vrstvy v závislosti od hrúbky a súčiniteľa tepelnej vodivosti daného materiálu.	Fyzikálne vlastnosti materiálu: Materiál: Objemová hmotnosť [kg/m3]: Súčiniteľ tepelnej vodivosti [W/(m.K)]: Merná tepelná kapacita [J/(kg.K)]: Fakto: difúzneho odporu: tepelný odpor R [(m ² .K)/W]: Hrúbka materiálu[mm]:	ISOVER CLIMA 034 55 0,037 0,034 030 1 1 1 Vlastný materiál Pridať vrstvu	

Vrstvu s vybraným materiálom z knižnice a zadefinovanou hrúbkou pridáme do skladby fragmentu kliknutím na "Pridať vrstvu".

Knižnica materiálov

Ako prvé v poradí sú umiestnené konštrukčné materiály dodávané jednotlivými divíziami spoločnosti SAINT-GOBAIN. Hviezdičkou sú označené materiály prebrané z normy STN 73 0540-3. Vlastnosti ostatných materiálov sú prebraté z dostupných certifikátov, katalógov a technických listov od výrobcov jednotlivých materiálov a ich správnosť nie je preto garantovaná normou. Vo výpočtoch je použitá výpočtová (návrhová) hodnota súčiniteľa tepelnej vodivosti (prvá v poradí), odvodená z charakteristickej hodnoty (deklarovanej výrobcom) podľa STN EN ISO 10456. Je možné zadať i materiály s meniteľnými difúznymi vlastnosťami ("letná" hodnota faktoru difúzneho odporu p_{le}).

K dispozícií je, rovnako ako v sekcií "Vonkajšie okrajové podmienky", aj pokročilé vyhľadávanie. Po kliknutí na lištu s nápisom "Materiál (hľadať)" sa rozbalí vyhľadávacie okno, kde môžete priamo vyhľadať materiál podľa názvu alebo preferovaných fyzikálnych parametrov (hustota, súčiniteľ tepelnej vodivosti a pod.). Pre vyhľadávanie podľa fyzikálnych parametrov je potrebné zakliknúť <u>príslušný štvorček</u> v danom riadku, zadať rozsah parametrov vyhľadávania a potvrdiť príslušným tlačidlom "@".

▲ Materiál (hľadať)		
isover unirol	JOVER UNIR	OL PLUS
hustota	BOVER UNIR	DL PROFI
	ISOVER UNIR	DL PLUS
	ISOVER UNIR	DL PROFI
tep.kapacita <>	ISOVER UNIR	DL PLUS
dif.faktor 🔷 🗌	(@) ISOVER UNIRG	DL PROFI
Hlavná skupina:	ISOVER - zateplenie	oodkrovia a stropov 🗸 🗰
Podskupina: EPD www	ISOVER UNIROL PLU	JS 🗸
Obiomová hmotnosť:	15.5	100000000
	13.3	\sim
	15.5	▼
	13.5	~
Fyzikálne vlastnosti materiálu:	13.3	×
Fyzikálne vlastnosti materiálu: Materiál:	ISOVER UNIROL PLU	IS
Fyzikálne vlastnosti materiálu: Materiál: Objemová hmotnosť [kg/m3]:	ISOVER UNIROL PLU 15,5	IS
Fyzikálne vlastnosti materiálu: Materiál: Objemová hmotnosť [kg/m3]: Súčiniteľ tepelnej vodivosti [W/(m.K)]:	ISOVER UNIROL PLU 15,5 0,039	0,036
Fyzikálne vlastnosti materiálu: Materiál: Objemová hmotnosť [kg/m3]: Súčiniteľ tepelnej vodivosti [W/(m.K)]: Merná tepelná kapacita [J/(kg.K)]:	ISOVER UNIROL PLU 15,5 0,039 940	0,036
Fyzikálne vlastnosti materiálu: Materiál: Objemová hmotnosť [kg/m3]: Súčiniteľ tepelnej vodivosti [W/(m.K)]: Merná tepelná kapacita [J/(kg.K)]: Faktor difúzneho odporu:	ISOVER UNIROL PLU 15,5 0,039 940 1	0,036

λi je v prípade produktov Isover doplnená hodnota z technických listov definovaná ako deklarovaná hodnota λD. λe je v prípade poduktov Isover doplnená hodnota z technických listov definovaná ako návrhová hodnota λ.

Postupne vyskladáme skladbu fragmentu z jednotlivých konštrukčných vrstiev. Poradie vrstiev je možné meniť kliknutím na príslušnú vrstvu a políčko "Hore" alebo "Dole" v ľavej časti. Rovnako funguje aj potiahnutie riadka príslušnej vrstvy "uchop a potiahni" na novú pozíciu. Vrstvu možno vymazať kliknutím na krížik.

V dolnej časti sa začne graficky znázorňovať <u>schéma skladby</u> s farebne odlíšenými vrstvami a celková hrúbka konštrukcie.

Hrúbku vrstvy je možné dodatočne editovať v poli "Hrúbka".

V prípade vrstvy konštrukcie s dreveným rámom sa aktivuje zadávanie vrstvy kliknutím na príslušný štvorček

tepelr Hrúbk	vý odpor R [(m ² .K)/W]: za materiálu[mm]:	0,8888888 🔲 🔍 Vlastný materiál					Pridar vrstvu Rám		
Mate (inter	riály: iér)	Rs	si + R + Rs	ie: 3.0	20		J: 0, R: 2,	324 918	
₽ ∕	Skladba nespĺňa normové požiadavky Ur2	<mark>hrúbka</mark> 100	max.λe +[2]+; 2	2.067478 218mm; I	859 SOVER I	(Vyb) UNIROL	e <mark>r) možné</mark> PLUS	e materiály ~	
č.v.	Názov materiálu vrstvy/ názov materiálu rámu	ρ	λe	λί	с	μ	μ _{le}	Hrúbka/ % rámu	
^ × ∨ □	* - Sadrokartón	750	0.22	0.15	1060	9	9	12,5	
^⊗ ⊽ <mark>∽</mark>	ISOVER UNIROL PLUS * - Mäkké drevo, tep. tok kolmo	<u>15.5</u> 400	<u>0.039</u> 0.18	<u>0.036</u> 0.15	940 2510	<u>1</u> 157	<u>1</u> 157	160 12	
(exte	riér)				hrút	oka fragm	entu: 17	72.5	

v 1. stĺpci v riadku príslušnej vrstvy konštrukcie.

názorný obrázok vrstvy s rámom

Tým sa aktivuje riadok pre zadanie percentuálneho podielu rámu (pod hodnotou hrúbky príslušnej vrstvy). Následne treba kliknúť na pole "Rám" a z databázy zadať materiál rámu. Program potom prepočíta vrstvu ako nehomogénnu, t.j. s vplyvom rámovej konštrukcie v danej vrstve.

Program automaticky počíta počas pridávania jednotlivých vrstiev fragmentu po zadaní príslušných hrúbok vrstiev a podielu rámu: <u>tepelný odpor konštrukcie *R*</u> a <u>súčiniteľ prechodu tepla *U*</u>.

	tepeln Hrúbk	ý odpor R [(m ² .K)/W]: a materiálu[mm]:	0,88888	8	vlastný	í m	nateriál	Prid	ať vrstvu	Rm
ſ	Mater (interi	iály: iér)	Rs	si + R + Rs	e:	8,0	88	l): 2: 2:	,324 ,918
		Skladba nespĺňa normové požiadavky Ur2	<mark>hrúbka</mark> 100	<mark>max.λe</mark> +[2]+; 2	0.0674 218mm	4 1;	859 SOVER U	(Vybe JNIROL I	e) možne PLUS	é materiály 🗸
	č.v.	Názov materiálu vrstvy/ názov materiálu rámu	ρ	λe	λί	I	с	μ	μle	Hrúbka/ % rámu
	^ X ∨ □	* - Sadrokartón	750	0.22	0.15		1060	9	9	12,5
		ISOVER UNIROL PLUS * - Mäkké drevo, tep. tok kolmo	<u>15.5</u> 400	0.039 0.18	<u>0.036</u> 0.15	_	940 2510	<u>1</u> 157	1 157	160 12
	(exter	iér)					hrúb	ka fragm	entu: 1	72.5

Program rovnako súčasne počíta aj odpor pri prestupe tepla konštrukciou R_{TOT} (Rsi + R + Rse), ktorý je potrebný na výpočet súčiniteľa prechodu tepla fragmentu – U.

Pri normatívnom posúdení tepelnotechnických vlastností podľa STN 73 0540-2 sa zohľadňujú hodnoty tepelného odporu konštrukcie *R* a nie *R*_{TOT}.

Celkový odpor pri prestupe tepla (R_{TOT}) zohľadňuje aj odpory pri prestupe tepla na vnútornom (Rsi) a vonkajšom (Rse) povrchu a má v tomto prípade len informačnú hodnotu – pre porovnanie s výpočtom nehomogénnej konštrukcie v časti "Výkres fragmentu" podľa normy STN EN ISO 6946.

Pri skladaní fragmentu konštrukcie sa po pridaní prvého materiálu/vrstvy zobrazí v hornej časti tabuľky riadok, v ktorom je informácia o nesplnení normatívnych požiadaviek na súčiniteľ prechodu tepla (U_{r2}) ak tento zatiaľ príslušná skladba nespĺňa. Pre splnenie potrebných normatívnych požiadaviek je najčastejšie potrebné pridať, resp. vymeniť materiál alebo zmeniť hrúbku materiálu v skladbe konštrukcie. Návrh doplnenia vhodného izolačného materiálu do skladby konštrukcie vychádza z rozdielu aktuálneho tepelného odporu a požadovanej normatívnej hodnoty pre daný typ konštrukcie. Na základe zadania akceptovateľnej "hrúbky vrstvy" v príslušnom zadávacom okne riadku sa v databáze vyhľadávajú materiály, ktoré by na základe svojich tepelno-technických charakteristík boli schopné zaistiť splnenie normatívnych tepelno-izolačných požiadaviek. Ak sa vhodné požadované materiály v databáze nachádzajú, objavia sa vo vyberateľnom zozname príslušného roletového menu aj s uvedením minimálnej potrebnej hrúbky na splnenie tepelno-izolačnej požiadavky. Stačením tlačidla "Vyber" sa príslušný materiál zobrazí v sekcií "Skladanie fragmentu" v časti "Materiál" a následne je na užívateľovi, kde sa daný materiál rozhodne v rámci danej skladby zaradiť. K dispozícií je aj nápoveda po kliknutí na postavičku "Profesora" v prvom stĺpci príslušného riadka.

Výkres fragmentu

Pri skladaní fragmentu konštrukcie je pre užívateľa dostupná aj možnosť grafického zobrazenia a úpravy fragmentu v modelári. Pre zobrazenie dvojrozmerného modelára kliknite na príslušnú ikonu – "Výkres fragmentu". Po kliknutí na ikonu sa zobrazí 2D model fragmentu v jednoduchom obdĺžnikovom modelári – vpravo.

tepeln Vrúbk	ý odpor R [(m ² .K)/W]: a materiálu[mm]:			Vlastný n	nateriál	Pric	dať vrstvu	Rám
Mater (interi	riály: iér)	Rs	si + R + R	se : 5,5	92		U: 0 R: 5),179 5,422
č.v.	Názov materiálu vistvy/ názov materiálu rámu	ρ	λe	λί	с	μ	μ _{le}	Hrúbka/ % rámu
^× ∨ □	* - Sadrokartón	750	0.22	0.15	1060	9	9	12,5
^× ∨ ≤	ISOVER UNIROL PLUS * - Mäkké drevo, tep. tok kolmo	<u>15.5</u> 400	<u>0.039</u> 0.18	0.036 0.15	<u>940</u> 2510	1 157	1 157	300 12
(exter	iér)	·			hr	hka fragn	nentu: 3	312.5
	2					- 0 +		Výkres kopětrukci

V zobrazenom modelári je možné navrhnutú skladbu editovať. Prostredníctvom funkcií úprav v hornom riadku modelára (označených veľkými písmenami). Je možné meniť materiály pre jednotlivé vrstvy, vzor a farbu jednotlivej vrstvy (materiálu), deliť fragment a pod. (nasledujúci obrázok).

V 2D modelári je ako príklad zobrazený charakteristický výsek fragmentu jednoduchej nehomogénnej konštrukcie podľa zadania. Nehomogénna (rámová) vrstva je proporcionálne rozdelená podľa zadania percentuálneho podielu rámu k charakteristickému výseku fragmentu konštrukcie (na dĺžke 1m). Typy materiálov sú priradené z roletového menu (viď obrázok vyššie). Predpripravené materiály z našej ponuky majú priradený aj vzor "šrafovania" a farbu. V prípade tvorby vlastného materiálu treba priradiť vzor a farbu. Umiestnenie, resp. poloha rámu a hrúbky jednotlivých vrstiev, prípadne doplnenie ďalšieho rámu vo vrstve je možné upravovať cez príkaz "Editor riadkov (L)" (Line editor)

Kliknutím na zvýraznené červené body a ich potiahnutím v línií hrubej modrej čiary je možné vytvorené hranice vo fragmente ľubovoľne posúvať.

Príkaz "Nastavenie šrafovania (P)" (Pattern editor) umožňuje upraviť vzor pre jednotlivé časti fragmentu v súvislosti s voľbou materiálu ktorý sa po označení obdĺžnika vyberie z ponuky a pridá pomocou príkazu "Assign material (A)". Na obrázku nižšie sú vysvetlené funkcie editoru vzorov pre materiály "šrafovania".

M) * - Mäkké drevo, tep, t	ok kolmo	× V A	C	BGLRPBX
R:[m ² .K/W] 5.661	e:[%) 1.228	U:[W/(m ² .K)] 0.177	výsle	e ky poslednej kalkulácie PDP 💷 🔟

Pri homogénnej konštrukcií (bez zadania rámovej vrstvy pri skladaní fragmentu) je možné túto dodatočne doplniť v modelári a dopočítať *U*-hodnotu daného fragmentu s nehomogénnou vrstvou pre porovnanie rozdielov a vplyvu nehomogénnej vrstvy na súčiniteľ prechodu tepla (*U*) konštrukcie.

Pri úpravách fragmentu v modelári je možné dopĺňať aj iné materiálové vrstvy (napríklad vloženie oceľového prvku a pod.) ako boli pôvodne preddefinované v skladaní fragmentu. Ak chceme do fragmentu doplniť aj iný materiál, možnosťou je vytvorenie fiktívnej vrstvy v časti "Skladanie fragmentu" výberom materiálov z ponuky knižnice. Po vytvorení fiktívnej vrstvy sa nám táto zobrazí v roletovom menu ponuky materiálov modelára až po príkaze na "Regenerovanie výberu materiálov (M)" (Material assigner).

M	M) - Mäkké drevo, tep. tok kolmo				✓ (V) A) C)			BGL	RP		X	
	R	R:[m ² .K/W]	5.661	e:[%]	1.228	U:[W/(m ² .K)	0.177	výsledky posledr	nej kalkulácie	DF Json		
											E	

Modelovanie fragmentu v modelári slúži na dodatočné výpočty súčiniteľa prechodu tepla – *U* pre nehomogénne konštrukcie podľa STN EN ISO 6946 (so zohľadnením vplyvu rámovej vrstvy a iných doplnkov, ktoré sa nedajú priamo navoliť v časti "Skladanie fragmentu".). Zmeny v modelári sa nezohľadňujú a neprejavia vo výpočte fragmentu a v príslušných <u>hodnotách *U* a *R*</u>, kde sa vplyv rámovej konštrukcie <u>zohľadňuje samostatne</u>, ale slúžia len ako porovnávacie kritérium pre hodnotenie konštrukcie.

Výsledná hodnota tepelného odporu vypočítaná v modelári zodpovedá odporu pri prechode tepla konštrukciou $R_{TOT} = Rsi + R + Rse$. Pre zohľadnenie vplyvu inej nehomogenity ako je rámová vrstva, ktorá sa nedá

namodelovať v časti "Skladanie fragmentu" ale len v modelári sa táto môže preniesť do výpočtu fragmentu len dodatočnou úpravou percentuálneho podielu rámu v nehomogénnej vrstve konštrukcie tak, aby výsledná hodnota tepelného odporu *R*_{TOT} približne zodpovedala výpočtovej hodnote *R* v modelári.

Upozornenie: v rámci výberu materiálov ▼Materiál (hľadať) cez príslušné roletové menu sa v tomto ISOVER - kontaktné fasády EPD www ISOVER CLIMA 034 zobrazujú niektoré materiály s červeným Podskupina Objemová hmotnosť: ISOVER EPS SOKLOVÁ DOSKA 150 kPa podfarbením. Toto zvýraznenie indikuje ISOVER EPS SOKLOVÁ DOSKA 200 kPa skutočnosť, že daný materiál sa **ISOVER FASOTERM NF ISOVER FASOTERM PR** v súčasnosti už nevyrába. Po výbere e vlastnosti materiálu: ISOVER NF 333 takéhoto materiálu z príslušného menu g/m3]: jemová hmotnost [*α/m3]: činiteľ tepelnej vodivosti [→*"m rná tepelná kapacita [J/(kg.K)]: ISOVER NE 333 \ Ob ISOVER Puren PURENOTHERM 80 - 120 mm Vás na to upozorní aj program Fragment n.K)] v riadku pod menu pre výber materiálov. ISOVER Puren PURENOTHERM nad 120 mm r difúzneho od ISOVER Styrodur 2500 C 20 mm ▼Materiál (hľadať) ISOVER Styrodur 2500 C 30 mm Hlavná skupina: ISOVER - kontaktné fasády × ISOVER Styrodur 2500 C 40 mm ISOVER FASOTERM PF SOVER Styrodur 2500 C 50 mm × ISOVER Styrodur 2500 C 60 mm ová h 135 ISOVER Styrodur 2800 C 100 mm Materiál nedoporučovaný: nevyrába sa ISOVER Styrodur 2800 C 120 mm Rsi + R ISOVER Styrodur 2800 C 140 - 160 mm Názov materiálu vrstvy/ názov materiálu rámu ISOVER Styrodur 2800 C 20 mm Dôvodom, prečo sú dané materiály č.v. ISOVER Styrodur 2800 C 30 mm naďalej ponúkané v menu materiálov aj ^X ISOVER Styrodur 2800 C 40 mm - Sadrová omietka 0.6 1300 po skončení ich výroby je, že sú použité ŇŬ Rigips v mnohých doteraz realizovaných ٥X HELUZ brúsená 24 0.27 0.257 1000 660 7 240 konštrukciách a môže byť potrebné ich

použiť do výpočtov fragmentov konštrukcií napríklad pre overenie tepelnotechnických vlastností existujúcich budov – pri ich rekonštrukciách a pod.

Po zostavení skladby vlastnej konštrukcie v časti "Skladanie fragmentu" pokračujeme kliknutím na zelenú šípku k bodu: "Výpočet fragmentu".

7. Výpočet fragmentu

Zobrazí sa tabuľka s rekapituláciou vstupných údajov a výsledkami. *U*-hodnota je vypočítaná so zohľadnením vplyvu rámovej vrstvy, ak sa takáto v konštrukcií nachádza, a následne je porovnávaná s aktuálnymi normatívnymi požiadavkami, ktoré sú zobrazené pre daný typ konštrukcie, napríklad:

Výsledky výpo	čtov:	Vplyv rámovej konštrukcie
Teplota povrchu konštrukcie Φsi:	18.610 °C	
Difúzny odpor konštrukcie:	1.448 x10^-9 m/s	
Tepelný odpor konštrukcie R:	3.102 m2.K/W	zníženie -1.057 z 4.159 m2.K/W
R hodnoty	R _{min} 2.000 X R _N 3.0	000 X R_{r1} , R_{r2} 4.400 - R_{r3} 6.500 -
Konštrukcia NEvyhovuje norm	alizovanej hodnote R	1.
Súčiniteľ prechodu tepla U:	0.306 W/(m2.K)	zvýšenie 0.075 z 0.231 W/(m2.K)
U hodnoty	U _{max} 0.460 X U _N 0.3	320 X U _{r1} , U _{r2} 0.220 - U _{r3} 0.150 -

Konštrukcia NEvyhovuje požadovanej normalizovanej hodnote Ur1.

Krížikom je vyznačené, ktorú hodnotu skladba splňuje: maximálnu hodnotu pred r. 2013 (U_{max}), normalizovanú po r. 2013 (U_N) a po r. 2016 ($U_{r,1}$) a súčasne platnú hodnotu od 1.1. 2021 ($U_{r,2}$), resp. cieľovú odporúčanú hodnotu ($U_{r,3}$).

Nasledujú grafy: v prvom grafe sa zobrazí grafický priebeh teplôt v konštrukcií a v druhom grafe priebeh čiastočného tlaku vodnej pary v danom mieste konštrukcie (zelenou), ktorý sa porovnáva s tlakom nasýtenej vodnej pary vztiahnutým na teplotu v danom mieste konštrukcie (modrou), ako aj hodnoty relatívnej vlhkosti vzduchu v danom mieste (červenou). Taktiež sa zobrazí výpočet prítomnosti kondenzácie, prípadne hrúbky kondenzačnej zóny. V tabuľkách sa zobrazia i hodnoty na rozhraní jednotlivých vrstiev konštrukcie.

V samotnom výpočte (predposledný bod pred výsledkami výpočtu fragmentu) sa nám po kliknutí na nadpis "Výpočet kondenzácie vo fragmente", resp. na tlačidlo "Testovanie", sa rozbalí zväčšený graf s možnosťou prepočtu kondenzácie podľa zmenených <u>okrajových podmienok</u>, ktoré sa dajú zmeniť v ľavom hornom rohu grafu. Po prepísaní okrajových podmienok a kliknutí na tlačidlo "Test" sa uskutoční prepočet, ktorého výsledky sa zobrazia priamo v grafe.

Tip: Ak chcete vo výpočte programu Fragment uvažovať so zmenenými okrajovými podmienkami použitými v teste "Výpočtu kondenzácie vo fragmente" (graf), je potrebné tieto manuálne zadať v bode č.3 – "Vonkajšie okrajové podmienky".

Novinkou v programe ISOVER Fragment pri testovaní možností kondenzácie podľa zmenených okrajových podmienok v časti "Výpočet" je návrh dodatočnej parozábrany v prípade výpočtovej kondenzácie vo fragmente konštrukcie. Parozábranu navrhujeme pre zadanú maximálnu hrúbku (obdobne ako v časti skladanie fragmentu – pri nesplnení normatívnych podmienok na tepelný odpor konštrukcie) a skúšame vyhľadať v databáze materiálov také, ktoré majú také difúzne charakteristiky, ktoré sú schopné zabezpečiť odstránenie kondenzácie pri daných vonkajších okrajových podmienkach výpočtu. Ak sa nájde požadovaný materiál, tento sa objaví vo vyberateľnom zozname príslušného roletového menu s uvedením minimálnej potrebnej hrúbky na zabezpečenie odstránenie kondenzácie v závislosti od difúznych charakteristík materiálu. Stačením tlačidla "Vyber" sa príslušný materiál nahodí v sekcií "Skladanie fragmentu" v časti "Materiál" do 2. vrstvy v smere od interiéru a následne je na užívateľovi, kde sa daný materiál rozhodne v rámci danej skladby zaradiť (na základe princípov stavebnej fyziky a tepelnej techniky odporúčame materiál parozábrany radiť čo najbližšie k interiérovej strane konštrukcie). K dispozícií je aj nápoveda po kliknutí na postavičku "Profesora" vľavo v strede nad sekciou pre zadávania hrúbky a materiálu parozábrany.

Pri výpočte a modelovaní prípadnej kondenzácie vo fragmente konštrukcie program umožňuje aj hľadanie presnej teploty, pri ktorej začína kondenzácia – na základe zadaných okrajových podmienok (vonkajšej a vnútornej teploty a relatívnej vlhkosti vzduchu). Po kliknutí na tlačidlo "@" – "Štart hľadania počiatočnej kondenzačnej teploty", program vypočíta teplotu, pri ktorej v konštrukcií už dochádza ku kondenzácií vodnej pary podľa daných okrajových podmienok. Zakliknutím príslušného štvorčeka "±" pod tlačidlom "@" sa zmení spôsob hľadania kondenzačnej teploty – nezaškrtnuté: hľadanie od najnižšej teploty exteriéru, zaškrtnuté: hľadanie od najvyššej teploty exteriéru. Výsledná výpočtová kondenzačná teplota sa zobrazí v okne "Exteriér – teplota" v rámci okrajových podmienok v ľavom hornom rohu grafu výpočtu kondenzácie vo fragmente (označené modrým obdĺžnikom v obrázku vyššie).

Tip: ak sa potrebujete v rámci testovania a práce s grafom dostať späť na pôvodný stav (pôvodné okrajové podmienky), ktorý bol prednastavený v rámci výpočtu, je potrebné znovunačítanie grafu kliknutím na tlačidlo "Testovanie".

Program vypočíta množstvo skondenzovanej a vyparenej vlhkosti <u>oboma metódami</u> – bilančnou, resp. sezónnou (podľa STN 73 0540) aj mesačnou (podľa EN ISO 17388) metódou.

<u>Podľa normy STN 73 0540</u> (výpočet podľa teplôt, pričom uvažuje s najnižšou vonkajšou výpočtovou teplotou podľa teplotnej oblasti, napr. -12 °C a narastajúcim teplotám postupne priraďuje početnosť ich výskytu). Pre každú teplotu ráta bilanciu vlhkosti, z čoho zostavuje celoročnú bilanciu (nasledujúci obrázok). Hoci táto norma už nie je v platnosti, je to konzervatívny výpočet s bezpečnostnou rezervou, ktorým odporúčame taktiež preveriť konštrukciu – s istotou vylúčenia kondenzácie.

Kond	enzačné z	óny	[10^-9 kg/(m2s)]				
zona	zač. [mm]	kon. [mm]	dif.tok z Int.	tok z Int. dif.tok do Ext. množ.k			
1	535.05	535.05	89.113097479	10.290819561	78.822277917		

Bilancia vodnej pary početnosťou výskytu teplôt podľa STN 730540-2

p _{di} [6) _i = 20, φ	_i = 50] = 11	68.476	Ašta	Aštart prvej, Bkoniec poslednej kond.zóny						
Tepl.	t	p _{sat} A	R _d A	Pde	р _{sat} В	R _d B	g _d A	g _d B	$\Delta M_d.t$		
-20	172.8	105.744	11.218	87.329	105.744	2.860	94.733	6.440	0.015		
-15	604.8	168.785	11.218	138.386	168.785	2.860	89.113	10.631	0.047		
-10	993.6	264.566	11.211	215.247	264.566	2.866	80.624	17.206	0.063		
-5	2592	407.654	11.218	328.968	407.654	2.860	67.820	27.517	0.104		
0	5572.8	617.189	11.211	488.400	617.189	2.866	49.172	44.930	0.024		
5	5788.8	878.727	11.211	688.773	878.727	2.866	25.844	66.269	-0.234		
10	5616	1233.485	11.211	932.755	1233.485	2.866	-5.798	104.914	-0.622		
15	5832	1708.522	11.211	1244.217	1708.522	2.866	-48.170	161.981	-1.226		
20	4104	2336.951	11.211	1589.127	2336.951	2.866	-104.223	260.891	-1.498		
25	432	3158.863	11.211	1836.234	3158.863	2.866	-177.533	461.422	-0.276		
G _k = 1	M _c = + SI	UM(∆M _d .t)	= 0.253	841 kg/m ²	G _v = M _{ev} =	= - SUN	l(∆M _d .t) =	3.85582	5 kg/m ²		
Bilanc	ia vodne	j pary: (Gk -	Gv)		G = -3.601984 kg/(m ² .rok)						
Konšt	rukcia n	ná priazniv	ú ročnú	bilanciu sl	ondenzov	anej a	vyparenej	vodnej p	ary.		

0 + - 1 1

Program podľa normy STN 73 0540 vypočíta konzervatívne na základe početnosti výskytu jednotlivých teplôt ročné množstvo skondenzovanej vodnej pary a množstvo vodnej pary, ktoré je schopné sa z konštrukcie počas roka vypariť a vyčísli vzájomnú bilanciu skondenzovanej a vyparenej vodnej pary.

<u>Záväzné je ale posúdenie podľa aktuálnej EN ISO 13788 (</u>mesačná metóda, ktorá počíta s priemernými mesačnými teplotami, napríklad -3,6 °C pre január, avšak nezohľadňuje krátkodobý výskyt nízkych teplôt). Môže nastať situácia, že podľa aktuálnej normy kondenzácia nevyjde a tento obrázok (graf) sa nezobrazí (jemnejšia metóda), hoci podľa STN 73 0540 kondenzácia (konzervatívna, tvrdšia metóda) vyjde a budú sa aj líšiť hodnoty ročnej bilancie vlhkosti.

Bilancia vodnej pary mesačnýmí priemermi teplôt podľa STN EN ISO 13788

	Kondenz	ačná zóna	[kg/m ²]				
mesiac	zač [mm]	kon [mm]	Φe [°C]	φe [%]	kondenz	odpar	Akum.vlhkosť
december	535.012	535.012	-1.6	80.14	0.043678	0.000000	0.043678
január	535.012	535.012	-3.3	80.8	0.077116	0.000000	0.120794
febuár	535.012	535.012	3	78.24	0.069653	0.000000	0.190447
marec	535.012	535.012	3	78.24	0.000000	0.063851	0.126596
apríl	535.012	535.012	8.4	75.71	0.000000	0.233975	-0.107379
máj	535.012	535.012	13.3	73.11	0.000000	0.475001	-0.582380
jún	535.012	535.012	16.3	71.36	0.000000	0.641570	-1.223950
júl	535.012	535.012	17.9	70.37	0.000000	0.780497	-2.004447
august	535.012	535.012	17.3	70.75	0.000000	0.734808	-2.739256
september	535.012	535.012	13.2	73.17	0.000000	0.454196	-3.193451
október	535.012	535.012	8.3	75.77	0.000000	0.237810	-3.431261
november	535.012	535.012	3	78.24	0.000000	0.061791	-3.493052
	roč	ný sumár			0.190447	3.683498	
febuár	maxim	um akumul			0.190447		
		v letných	mesiaco	och sa s	tihne odpa	ariť	

Hodnotenie kondenzácie

Bilancia vodnej pary početnosťou výskytu teplôt podľ	3 STN 730540-2
--	----------------

Ročné množstvo skondenzovanej vodnej pary:	Gk = 0.253841 kg/(m ² .rok)
Ročné množstvo vyparenej vodnej pary:	Gv = 3.855825 kg/(m ² .rok)
Bilancia vodnej pary: (Gk - Gv)	G = -3.601984 kg/(m ² .rok)
Konštrukcia má priaznivú ročnú bilanciu skondenzo	ovanej a vyparenej vodnej pary.
Kondenzuje pri vonk.teplote nižšej ako:	5.0 °C

V zmysle STN 73 0540 je nutné v prípade tepelných mostov posúdiť konštrukciu z hľadiska 2-rozmerného alebo 3-rozmerného tepelného poľa.

Bilancia vodnej pary mesačnýmí priemermi teplôt podľa STN EN ISO 13788

kond.zóna	ročný kondenz [kg/(m ² .rok)]	ročný odpar [kg/(m ² .rok)]	mesiac max.	akumulácie [kg/m ²]	leto
č.1	0.190447	3.683498	febuár	0.190447	odparí

V konštrukcii dochádza ku kondenzácii na jednom, či viac rozhraniach, ale pre každé rozhranie sa predpovedá vyparenie všetkého kondenzátu počas letných mesiacov. Podľa normy STN EN ISO 13788 musí byť zvažované riziko degradácie stavebných materiálov a zhoršenie tepelno technických vlastností ako dôsledok vypočítaného množstva vlhkosti, podľa normatívnych požiadaviek a iných nariadení v normách výrobkov.

Kliknutím na šípku prejdeme k výsledkom.

8. Výsledok fragmentu

Výstup je možné vytlačiť najprv kliknutím na ikonu "Tlačiť (do PDF)", po kontrole prípadne úprave tlačovej zostavy následne tlačiť z pdf., resp. uložiť ako pdf. Pred samotným zobrazením náhľadu pred tlačou ("Tlačiť (do PDF)") je možné upraviť výšku tlačovej strany kliknutím na vedľajšiu <u>ikonu s protichodnými šípkami</u> (vpravo). Po kliknutí na príslušné tlačidlo je možné nastaviť požadovanú výšku tlačovej strany v rozmedzí od 700 do 1500. Zmeny je možné sledovať v náhľade pred tlačou po zobrazení pdf. súboru.

Zadávací dátový súbor uložíme po kliknutí na ikonu "Uložiť fragment", alebo po kliknutí na ikonu "Uložiť do CLOUD-u". Kliknutím na "Upraviť skladbu" sa dostaneme na začiatočnú pozíciu "Skladanie fragmentu", kde môžeme editovať skladbu, hrúbky vrstiev a ďalšie hodnoty. Je možný aj opätovný prepočet po kliknutí na príslušnú zvýraznenú ikonu "Prepočet" vedľa ikony "Upraviť skladbu", ktorý umožňuje znovuprepočítanie daného fragmentu skladby v prípade, že boli pozmenené vstupné hodnoty.

Vo výstupnej zostave je zobrazená:

- rekapitulácia vstupných údajov
- teplota na povrchu (porovnávaná s teplotou pre vznik plesní)
- difúzny odpor
- hodnota tepelného odporu R a súčiniteľu prechodu tepla U, ich porovnanie s normatívnymi hodnotami
- grafický priebeh teploty, parciálneho tlaku vodnej pary a nasýtenej vodnej pary
- kondenzačná zóna
- množstvo skondenzovanej a vyparenej vody v konštrukcii, ročná bilancia vlhkosti v konštrukcii

Upozornenie: desatinný formát množstva vodnej pary je nastavený na 5 desatinných miest, kvôli možnému menšiemu množstvu sa zobrazuje aj vedecký zápis čísla (x10⁻ⁿ).

Vo výstupnej zostave je ďalej zobrazený:

- fázový posun a teplotný útlm
- grafické zobrazenie priebehu teploty a tlakov vodných pár
- v prípade podlahovej konštrukcie hodnota a posúdenie jej tepelnej prijímavosti

Na konci protokolu o výpočte je možné vložiť obrázok fragmentu konštrukcie, ktorý si môžete vytvoriť v časti "Skladanie fragmentu" vo "Výkrese fragmentu". Obrázok vytvoríte pomocou tlačidla s logom fotoaparátu editora v pravom hornom rohu a následne pridáte kliknutím na tlačidlo "Pridaj obrázok" v časti "Výsledky fragmentu". BGCRPBX

slednej kalkulácie 📴 🛲 💼

DO

Dáta je možné uložiť v dátovom súbore s príponou .json. Program vyzve na zadanie cieľovej zložky a názvu súboru. Uložený projekt sa načíta pri zadaní voľby "Otvoriť fragment zo súboru" v časti "Načítanie fragmentu" po novom spustení programu. Po otvorení projektu je možná editácia všetkých zadávaných hodnôt a údajov.

Okrem plánovaných vylepšení v nasledovnej verzii ISOVER Fragment intenzívne pracujeme na projektovom hodnotení energetickej hospodárnosti obytných budov (tepelno-technické charakteristiky a merná potreba tepla na vykurovanie) určenom na projekt pre stavebné povolenie.

Tip: Ak ste už program využívali v minulosti a viete aká operácia sa v danom kroku vykonáva, nemusíte dodržiavať preddefinovanú postupnosť menu. V "Nastavení" (na vrchnej lište vedľa tohto manuálu je úvodné info.) zvoľte prepínač profesionálneho módu. Využijete ho pri rýchlych úpravách.

9. Práca s CLOUD-om

CLOUD sa aktivuje kliknutím na ikonu CLOUD-u na hornej lište. Je možné aktivovať ho v potrebnej fáze programu (napríklad aj pri ukladaní súboru). Prvý krát sa treba zaregistrovať cez "Moje Konto", vyplniť príslušné kolónky a súhlas s podmienkami prijatia do CLOUD-u, ako aj požadovanú kategóriu:

ISOVER tepelné výr	počty CLOUD-ové	úložisko projektov	v (Neprihlásený	užívateľ)	ØX	Po kliknutí na "Prihlásiť sa" sa otvorí prístup do úložiska pre
Načítať projekt	Uložiť projel	kt Príspevky	O Cloude	Moje Konto		vybranú kategóriu a umožní zdieľanie uložených súborov.
odhlásený z CLOU	D-u					Pod položkou Načítať projekt"
Email užívateľa:	1		personal	ISOVER team		sa sprístupnia projekty
Heslo užívateľa:			Požadovaná	študent		v úložisku pre danú kategóriu.
Meno a priezvisko	·		kategória:	laik		Pri ukladaní projektu troba
Súhlasím s podmie	enkami prijatia do	CLOUD-u: 🗌		Email heslo		naipry v zostave fragmentu
Odhlásiť sa)	Prihlásiť sa	Zmeniť údaje	Registrovat	Odregistrovať		"Výsledok" kliknúť na "Uložiť do CLOUD-u":
ISOVER tepelné výpoč Načítať projekt	čty CLOUD-ové úlož Uložiť projekt	isko projektov (Nepri Príspevky O C	hlásený užívateľ) loude Moje ł	Konto	násle	edne pomenovať súbor
Projekty načítané.	ložonio projektu de	viložieka o pastava	n identifika šn	úah kritárií:	d prirdd	
Meno súboru:	fragment.json	Dostupn	osť pre všetky iba pre mi a pre ISO	ých ňa VER team	a pot	om už len uložiť.
Druh súboru: Autor: Popis: Prepíš) Čítaj	je veľmi vhodné projektu	skatkovito po	a pre štud a pre štud a pre laiko písať vlastno	cialistov lentov ov		
Druh súboru: s Autor: Popis: Ulož Prepíš Čítaj	je veľmi vhodné projektu d	skartkovito po	a pre šped a pre štud a pre laiko písať vlastno	cialistov lentov ov		
Druh súboru: Autor: Popis: Prepíš Čítaj	je veľmi vhodné projektu N	ska tkovito po	a pre šper a pre štud a pre laiko písať vlastno ent)	cialistov lentov by osti 0-20/128	— Po ukor	nčení sa nezabudnite odhlásiť cez

Postup registrácie v CLOUD-e - noví užívatelia

Po kliknutí na ikonu CLOUD-u sa zobrazí a aktivuje CLOUD-ové úložisko.

ISOVER tepelné výpočty CLOUD-ové úložisko projektov (Neprihlásený užívatel)						
Moje Konto	O Cloude					
Email užívateľa:		rsonal) ISOVER team				
Heslo užívateľa:		adovana študent				
Meno a priezvisko	p: kate	gória: laik				
Súhlasím s podmi	ienkami prijatia do CLOUD-u: 🗌	Email heslo				
Odhlásiť sa	Prihlásiť sa Zmeniť údaje Re	gistrovať) Odregistrovať)				
 Potvrdením súhlasu žiadateľ vyjadruje, že si prečítal Informácie o CLOUD-e v sekcii O Cloude spolu s Právnymi informáciami a týmito Podmienkami prijatia, a že im rozumie a súhlasí s nimi. Registrácia je bezplatná. Zrušenie registrácie je kedykoľvek možné, pričom však dovtedy uložené data projektov a príspevky ostávajú zachované. Dodatočné podmienky prijatia závisia od požadovanej kategórie, na základe ktorej sa filtrujú možnosti komunitnej spolupráce. 1. ISOVER team: registrácia je striktne podmienená dohovorom s administrátorom. Team tvoria spolupracovníci, podieľajúci sa na tvorbe programov. Pre užívateľov CLOUD-u poskytujú overené projekty a riešenia. 2. Špecialista - architekt, projektant: registrácia vyžaduje vyplnenie dodatočných personálnych informácií a bude platná po overení doručiteľnosti na zadanú email adresu. Špecialisti majú právo tvoriť články a komentovať, klásť požiadavky a otázky, hlásiť chyby. 3. Študent a Laik registrácia platná po overení doručiteľnosti na zadanú email adresu. Majú v prisplevaní právo iba klásť otázky. Každý registrovaný užívateľ môže sledovať na CLOUD-e uložené príspevky, vidieť všetky projekty a 						
Kazdy registrovany uzivatel może siedovat na CLOUD-e ulożené prispevky, vidiet všetky projekty a prehliadať ich / filtrovať podľa zvolených kritérií. Kategória - iba pre mňa), je chránená sekcia, do ktorej sa dostane len jej autor a môže obsahovať rozpracované projekty.						

Následne postupujte podľa nasledujúcich bodov:

- Pre registráciu nových užívateľov je potrebné zadať email používateľa, Vaše heslo a celé meno používateľa. Tieto tri údaje zadané pri registrácií budú potrebné aj pre každé opätovné prihlásenie do CLOUD-u.
- 2. Následne je potrebné si zvoliť typ užívateľa podľa jednotlivých kategórií: ISOVER team, špecialista architekt, projektant alebo študent a laik. Podrobný popis jednotlivých kategórií a podmienky prijatia sú zobrazené pod tabuľkou sekcie "Moje konto" (viď. obrázok vyššie). Pre kategórie ISOVER team a Špecialista architekt, projektant sa zobrazí doplňujúca tabuľka, kde je potrebné vyplniť ďalšie doplňujúce údaje (nezabudnite potvrdiť správnosť údajov zakliknutím príslušného štvorčeka vpravo).

ISOVER tepelné výpočty CLOUD-ové úložisko projektov (Neprihlásený užívateľ)			OX	
Moje Konto O Clo	bude			
Email užívateľa: Heslo užívateľa: Meno a priezvisko: Súhlasím s podmienkan	personal Požadovaná kategória:	ISOVER team <u>špecialista</u> študent laik Email heslo		Ak ste už na CLOUD-e registrovaný a zabudli ste svoje heslo, klikom na "Email heslo" Vám do pár minút na
Titul, Meno a priezvisko Miesto pôsobnosti	Skutočné meno priezvisk miesto trvalého bydliska	Údaje sú vyplnené správne a pravdivo Potvrdzujem		uvedenú emailovú adresu príde Vaše heslo.
Firma News CLOUD News ISOVER	firma, či organizácia Žiadam o zasielanie noviniek CLOUD-u Žiadam o zasielanie noviniek ISOVER-u			

- 3. Po vyplnení všetkých potrebných údajov nezabudnite zakliknúť ešte *súhlas s podmienkami prijatia do CLOUD-u.*
- 4. Následne je potrebné kliknúť na "Registrovať".
- 5. Na zadanú emailovú adresu Vám príde potvrdzujúci email, ktorým potvrdíte Vašu registráciu. Registrácia je platná až po overení doručiteľnosti na emailovú adresu.

Poznámka: Registrácia v kategórií ISOVER team je striktne podmienená dohovorom s administrátorom.

10. Ako postupovať pri sťahovaní programu ISOVER fragment V5 ?

Nainštalovanie programu, rovnako ako jeho online využívanie je BEZPLATNÉ.

- 1. Zaregistrujte, resp. prihláste sa do CLOUD-u (prihlásenie užívateľa bliká)
- 2. Aktuálnu verziu programu na stiahnutie nájdete na "i" info: ZIP and Download fragment5.zip

- 3. Súbor stiahnite do svojho počítača.
- 4. Príslušný súbor je "zbalený" vo formáte "rar" po stiahnutí je potrebné ho "rozbaliť"
- 5. Potom postupujte zložkami nasledovne: Fragment 5 → html → fragment5 (súbor vo formáte xhtml po jeho otvorení sa spustí program v internetovom prehliadači) alebo: Fragment 5 → index (po jeho otvorení sa program spustí v internetovom prehliadači)

Poznámka: Nainštalovaný program sa spúšťa v lokálnom móde v internetovom prehliadači aj bez momentálneho spojenia s internetom. Vrele odporúčaný, dokonale preverený a fungujúci je prehliadač **Google Chrome**.

Na stiahnutie je k dispozícií vždy najaktuálnejšia verzia programu. Ak po čase dôjde v online programe k nejakej aktualizácií, táto sa v stiahnutom programe neprejaví – je potrebné si znovu stiahnuť najnovšiu verziu programu podľa predošlého návodu.

Tip: odporúčame užívateľom, ktorý majú prístup na internet používať online verziu programu. Online verzia programu Fragment je na rozdiel od stiahnutej verzie (dostupnej aj v offline režime) pravidelne aktualizovaná.

Plánujeme vytvoriť knižnicu charakteristických skladieb prístupnú práve prostredníctvom CLOUD-u.

Prajeme úspešnú prácu s programom a uľahčenie projekčných prác. Budeme povďační za pripomienky k programu, ako aj upozornenia na prípadné chyb, resp. ťažkosti alebo prípadné chybové hlásenia programu Fragment 5.0. prostredníctvom e-mailu: <u>info@isover.sk</u>

